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Examples of Applications 

Virtual Prototyping 

Physically-based simulation 
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Application Areas for Collision Detection 

§  Collision detection is an enabling technology for: 
§  Physically-based simulation 

§  Interaction in VR 

§  Haptic rendering 

§  Application areas: 

§  Games, animation, surgery, virtual prototyping, path planning, online 
robot collision avoidance 
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Collision Detection Within Simulations 

§  Main loop: 

Move objects 

Check collisions 

Handle collisions (e.g.,  compute penalty forces) 

 

§  Collisions pose two different problems: 

1.  Collision detection 

2.  Collision handling 

§  In this chapter: only collision detection 
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Definitions 

§  Given 

§  The detection problem: 
        “P and Q collide“   : 

 
 

    

§  The construction problem: 
         compute 

 

§  For polygonal objects we define collisions as follows: 

         P,Q collide   
  

§  The games community often has a different definition of "collision" 

P Q 

x 

R 
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Objekt-Klassen 

§  Convex 

§  Closed and simple 
(no self-penetrations) 

§  Polygon soups 

§  Not necessarily closed 

§  Duplicate polygons 

§  Coplanar polygons 

§  Self-penetrations 

§  Degenerate cardigans 

§  Holes 

§  Deformable 

polygon soup 

einfach & geschlossen 

konvex 
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Importance of the Performance of Collision Detection 

 naïve algorithm 
(test all pairs of polygons) 

 clever algorithm 
(use bbox  hierarchy) 

Conclusion: the performance of the algorithm for collision detection 
determines (often) the overall performance of the simulation! 
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Requirements on Collision Detection 

§  Handle a large class of objects 

§  Lots of moving objects (some 1000) 

§  Very high performance, so that a physically-based simulation can  
do many iterations per frame (at least 2x 100,000 polygons in <1 
millisec) 

§  Return a contact point ("witness") in case of collision 

§ Optionally: return all intersection points 

§  Auxiliary data structures should not be to a large zu große 
zusätzliche Datenstrukturen (<2x); 

§  Preprocessing for these auxiliary data structures should not take too 
long, so that it can be done at startup time (< 5sec / object) 
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The Collision Detection Pipeline 

Broad phase Narrow phase 

Set transform. 
in scene graph 

Callback 
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The Collision Interest Matrix 

§  Interest in collisions is specific to different applications/modules:  

§  Not all modules in an application are interested in all possible collisions; 

§  Some pairs of objects collide all the time, some can never collide; 

§  Goal: prevent unnecessary collision tests  
⇒ Collision Interest Matrix 

 

§  The elements in this matrix comprise: 

§  Flag  for collision detection 

§  Additional info that needs to be stored  
from frame to frame for each pair for certain 
algorithms ( e.g., the separating plane) 

§  Callbacks in die Module 

1 2 3 4 5 6 7 8 Obj 
1 
2 
3 
4 
5 
6 
7 
8 

x 
x 

x 
x 

x x 

x 
x x x x 
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Methods for the Broad Phase 

§  Broad phase = one or more filtering step 

§  Goal: quickly filter pairs of objects that cannot intersect because they 
are too far away from each other 

§  Standard approach:   

§  Enclose each object within a bounding box (bbox)  

§  Compare the 2 bboxes for a given pair of objects 

§  Assumption: n  objects are moving 

Ø Brute-force method needs to compare Ο(n2) bboxes 

§  Idea: try to determine neighbors (i.e., close objects) very quickly 

Ø 3D grid, sweep plane, etc. 
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 The 3D Grid 

Idea: 
1.  Partition the "universe" by  a grid 

2. Objects are considered neighbors, if they 
occupy the same cell 

3. Determine cell occupancy by bbox 

4. When objects move →  update grid 

§  Neighbor-finding = find all cells that contain 
more than one bbox 
§  Data structure here: hash table (!) 

§  Collision in hash table → probably neighbor 

The trade-off: 

§  Fewer cells = larger cells 
Ø  Distant objects are still "neighbors" 

§  More cells =  smaller cells 
Ø  Objects occupy more cells 

Ø  Effort for updating increases 

Total time 

# cells along  
each dimension 1 8 16 32 



G. Zachmann 14 Collision Detection Virtual Reality 21 January 2013 WS 

The Plane Sweep Technique (Sweep and Prune) 

§  The idea: 
sweep plane through space  
perpendicular to the X axis 

§  The algorithm: 
 sort the X coordinates of all boxes 
 start with the leftmost box 
 keep a list of active boxes 
 jump from box border to box border: 
    if current box border is the left side (= "opening"): 
       add this box to the list of active boxes 
       check the current box against all others in the active list 
    else (= "closing"): 
       remove this box from the list of active boxes 
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Frame-to-Frame Coherence 

§  Observation: 
 Two consecutive images in a sequence differ only by very little (usually). 

Ø Terminology: frame-to-frame or temporal coherence 

§  Examples: 
§ Motion of a camera 

§ Motion of objects in a film / animation 

§  Applications: 
§  Computer Vision (e.g. tracking of markers) 

§ MPEG 

§  Collision detection 

§  Ray-tracing of animations (e.g. using kinetic data structures) 

§  Algorithms based on frame-to-frame coherence are called 
“incremental”, sometimes “dynamic” or “online” (the latter is 
actually the wrong term) 
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Convex Objects 

§  Definition of “convex polyhedron”: 

 
 
 
 
 
 

§  A condition for "non-collision":  
    P and Q are  “linearly separable”  ⇔ 
 
 

    (“P is completely to one side of H,  
      Q completely on the other side”) 

x 

y 

P 

Q 

Separating plane H 

P ⇢ R3
convex ,

8x , y 2 P : xy ⇢ P ,

P =

\

i=1...n

Hi ,Hi = half-spaces

9 half-space H : P ✓ H ^ Q ✓ Hc
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The Algorithm “Separating Planes” 

§  The idea: utilize temporal coherence → 
if Et was a separating plane between P and Q at time t, then the 
new separating plane Et+1 is probably not very "far" from Et 
(perhaps it is even the same) 

Et 

Et+1 
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load Et = separating plane between P & Q at time t 

E := Et 

repeat max n times 

    if exists                   on the back side of E: 

        rot./transl. E such that v is now on the front side of E 

    if exists                   on the front side of E: 

        rot./transl. E such that v is now on the back side of E 

    if there are no vertices on the "wrong" side of E, resp.: 

        return "no collision" 

if there are still vertices on the "wrong" side of E: 

    return "collision"   {could be wrong} 

save Et+1 := E   for the next frame 

Et 

Et+1 

v 2 vertices(P)

v 2 vertices(Q)

For details on the "rot./transl. E" step → see perceptron learning algorithm 
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How to Find a Vertex on the "Wrong" Side Quickly 

§  The brute-force method: 
 test all v whether 

§  Observation: 

1.  f is linear,  

2.  P is convex ⇒ f(x) has  
(usually) exactly one minimum  
over all points x on the surface of P 

3.    

§  The algorithm (steepest descent on the surface w.r.t. f): 

§  Start with an arbitrary vertex v 

§ Walk to the neighbor v’ of v for  which 

§  Stop if there is no neighbor v’ of v for  which 

p 

n 

E P 

v* 
�1 v� : f (v�) = min

f (v) = (v � p)·n > 0

f (v0) = min. (among all neighbors)

f (v0) < f (v)
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Properties of this Algorithm 

+ Expected running time is in O(1)! 
The algo exploits frame-to-frame coherence: 
if the objects move only very little, then the algo just checks 
whether the old separating plane is still a separating plane; 
if the separating plane has to be moved, then the algo is often 
finished after a few iterations. 

+ Works even for deformable objects, so long as they stay convex 

– Works only for convex objects 

– Could return the wrong answer if P and Q are extremely close but 
not intersecting (bias) 

§  Research question: can you find an un-biased (deterministic) variant? 
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Visualization 
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Closest Feature Tracking 

§  Proposed by Lin & Canny in 1992 ( → "Lin-Canny-Algorithm") 

§  Idea: 

§ Maintain the minimal distance between a pair of objects 

§ Which is realized by one point on the surface of each object 

§  If the objects move continuously, then those points move 
continuously on the surface of their objects 

§  The algorithm is based on the following methods: 

§  Voronoi diagrams 

§  The “closest features” lemma 
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Voronoi Diagrams for Point Sets 

§  Given a set of points                 , called sites (or generators) 

§  Definition of a Voronoi region/cell : 

§  Definition of Voronoi diagrams: 
The Voronoi diagram  
over a set of points S is 
the union of all Voronoi regions  
over the points in S. 

§               induces a partition of the  
plane into Voronoi edges,  
Voronoi nodes, and Voronoi regions 

§  Interaktive Demo: http://web.cs.uni-bonn.de/I/GeomLab/VoroGlide/  

Voronoi  
region  
w.r.t. pi 

pi 

VD(S)

VD(S)

V (pi) := {p 2 R2 | 8j 6= i : ||p� pi || < ||p� pj ||}
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Voronoi Diagrams over Sets of Points, Edges, Polygons 

§  Voronoi diagrams can be defined analogously in 3D (and higher 
dimensions) 

§  What if the generators are not points but edges / polygons? 

§  Definition of a Voronoi cell is still the same: 
The Voronoi region of an edge/polygon := all points in space that 
are closer to "their" generator than to any other 

§  Example in 2D: 

Voronoi region  
induced by 
a vertex 

Voronoi region  
induced by an edge 

Voronoi generators 
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Outer Voronoi Regions Generated by a Polyhedron 

The external  
Voronoi regions of … 
(a)  faces  
(b)  edges 
(c)  a single edge 
(d)  vertices 

Outer Voronoi 
regions for convex 
polyhedra can be 
constructed very 
easily!  
(We won't need 
inner Voronoi 
regions.) 
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Closest Features 

§  Definition Feature fP :=  a vertex, edge, polygon of polyhedron P. 

§  Definition "Closest Feature": 
Let fP and fQ be two features on polyhedra P and Q, resp., and let 
p, q be points on fP and fQ , resp., that realize the minimal 
distance between P and Q, i.e. 

 
Then fP and fQ are called "closest features". 

§  The "closest feature" lemma: 
Let V(f) denote the Voronoi region  
generated by feature f; let p and q be  
points on the surface of P and Q realizing  
the minimal distance.  Then 

       fP, fQ  are closest features ⇔  p is in V(fQ) ,  q is in V(fP) . 

p 
q fP 

fQ 
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Example 

q =  fQ (a vertex) 

 p = fP (an edge)  

Q 

P 
p
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The Algorithm (Another Kind of a Steepest Descent) 

Start with two arbitrary features fP, fQ on P and Q, resp. 

while  ( fP, fQ ) are not (yet) closest features  and  dist( fP, fQ ) > 0 : 

 if (fP,fQ) has been considered already:  
   return “collision” (b/c we've hit a cycle) 

 compute p and q that realize the distance between fP and fQ 

 if  p ∈ V(q)  und  q ∈ V(p) : 
   return “no collision”, (fP,fQ) are the closest features 

 if p lies on the "wrong" side of V(q) : 

   fP := the feature on that "other side" of V(q)  

 do the same for q, if q ∉ V(p) 

if dist( fP, fQ ) > 0 : 

 return "no collision" 

else 

 return "collision" 

Notice: in case of collision, some features 
are inside the other object, but we did not 
compute Voronoi regions inside obnjects! 
→ hence the chance for cycles 
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Animation of the Algorithm 

P 

Q

Start  

Start  f1
Q 

 f1 
P 

d1 

f2 
P 

f2
Q 

d2 f3
P 

f3
Q 

d3 

d4 

f4
P 

f4
Q 
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Some Remarks 

§  A little question to make you think: 
Actually, we don't really need the Voronoi diagram!  
(but with a Voronoi diagram, the algorithm is faster) 

§  The running time (in each frame) depends on the "degree" of 
temporal coherence 

§  Better initialization by using a lookup table: 

§  Partition a surrounding sphere by a grid 

§  Put each feature in each  
grid cell that it covers when  
propjected onto the sphere 

§  Connect the two centers  
of a pair of objets  
by a line segment 

§  Initialize the algorithm by the features hit by that line 
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Movie 
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The Minkowski Sum 

§  Hermann Minkowski (1864 – 1909), 
German mathematician and physicist 

§  Definition (Minkowski Sum): 
Let A and B be subsets of a vector space; 
the Minkowski sum of A and B is defined as  

§  Analogously, we define the Minkowski difference: 

§  Clearly, the connection between Minkowski sum and difference: 

§  Applications: computer graphics, computer vision, linear 
optimization, path planning in robotics, ... 

A� B = {a + b | a ⇥ A, b ⇥ B}

A⇥ B = {a� b | a ⇤ A, b ⇤ B}

A⇤ B = A⇥ (�B)
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Some Simple Properties 

§  Commutative: 

§  Associative: 

§  Distributive w.r.t. set union: 

§  Invariant against translation: 

A� (B ⇥ C ) = (A ⇥ B)� (A ⇥ C )

A� (B � C ) = (A� B)� C

A� B = B � A

T (A)� B = T (A� B)
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§  Intuitive "computation" of the Minkowski sum/difference: 

 

-  Warning: the yellow polygon in the animation shows the Minkowsi sum 
modulo(!) possible translations! 
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Visualizations of a Simple Example 
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The Complexity of the Minkowski Sum (in 2D) 

§  Let A and B be polygons with n and m vertices, resp.: 

§  If both A and B  are convex,then             is convex, too, and has 
complexity 

§  If only B is convex, then             has complexity 

§  If neither is convex, then            has complexity 

§  Algorithmic complexity of the computation of             : 

§  If A and B are convex, then             can be computed in time  

§  If only B is convex, then             can be computed in  
randomized time 

§  If neither is convex, then             can be computed in time 

A� B

A� B

A� B

A� B

A� B

A� B

O(m + n)

A� B
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An Intersection Test for Two Convex Objects using Minkowski Sums 

§  Translate both objects so 
that the coordinate system's 
origin 0 is inside B 

§  Compute the Minkowski 
difference 

§  A and B intersect ⇔ 
 

§  Example where an 
intersection occurs: 

0 ⇥ A� B
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Hierarchical Collision Detection 

§  The standard approach for "polygon 
soups" 

§  Algorithmic technique: 
divide & conquer 

BP 

BQ 

BP
1 

BP
2 

BQ
1 

BQ
2 



G. Zachmann 54 Collision Detection Virtual Reality 21 January 2013 WS 

The Bounding Volume Hierarchy (BVH) 

§  Constructive defintion of a bounding volume hierarchy: 

1.  Enclose all polygons, P, in a bounding volume BV(P) 

2.  Partition P into subsets P1, ..., Pn 

3.  Rekursively construct a BVH for each Pi  

and put them as children of P in the tree 

§  Typical arity = 2 or 4 

B 
B1 

B2 

B3 

B 

B1 B2 B3 

B31 B32 

B31 
B32 
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§  Visualizations of different  
levels of some BVHs: 
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The General Hierarchical Collision Detection Algo 

§  Simultaneous traversal 
of two BVHs: 

 

traverse( X, Y ) 

if X,Y do not overlap then 
 return 

if X,Y are leaves then 
 check polygons 

else 
 for all children pairs do 
  traverse( Xi, Yj ) 

E F G D 

C B 
A 

F5 G4 G5 F4 
F7 G6 G7 F6 

D7 E6 E7 D6 
E4 D4 D5 E5 

A1 
B2 B3 C2 C3 

5 6 7 4 

3 2 
1 

Bounding Volume Test Tree (BVTT) 
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A Simple Running Time Estimation 

§  Best-case:  

  

§  Extremely simple average-case estimation:  
§  Let P[k] = probability that exactly k children pairs overlap, k ∈ [0,…,4] 

§  Assumption: all events are equally likely → 16 possible events 

§  Expected running time: 

§  In praxi: running time is better/worse depending on degree of overlap 

Path through the  
Bounding Volume Test Tree (BVTT) 

T (n) = 1
16 ·0 + 4

16 ·T (n
2) + 6

16 ·2T (n
2) + 4

16 ·3T (n
2) + 1

16 ·4T (n
2)

T (n) = 2T (n
2) � O

�
n
⇥

P[k] =

✓
4

k

◆
/16 , P[0] =

1

16
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Different Kinds of Bounding Volumes 

Requirements (for collision detection): 

§  Very fast overlap test → "simple" BVs 

§  Even if BVs have been translated/rotated 

§  Little overlap among BVs on the same level in a BVH (i.e., if you 
want to cover the whole space with the BVs, there should be as 
little overlap as possible) → "tight BVs" 
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Different Kinds of Bounding Volumes 

Box, AABB (R*-trees) 
[Beckmann, Kriegel, et al., 1990] 

Sphere 
[Hubbard, 1996] 

k-DOP / Slabs 
[Zachmann, 1998] Spherical  shell 

[Manocha, 1997] 

Prism 
[Barequet, et al., 1996] 

OBB (oriented  bounding box) 
[Gottschalk, et al., 1996] 

Cylinder 
[Weghorst et al., 1985] 

Convex hull 
[Lin et. al., 2001] 

Intersection of 
several BVs 
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The Wheel of Re-Invention 

§  OBB-Trees: have been proposed already in 1981 by Dana Ballard 
for bounding 2D curves, except they called it "strip trees" 

§  AABB hierarchies: have been invented(?) in the 80-ies in the 
spatial data bases community, except they call them "R-tree", or 
"R*-tree", or "X-tree", etc. 
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Digression: the Wheel of Fortune (Rad der Fortuna) 

Codex Buranus Boccaccio De Casibus Virorum Illustrium Paris: 1467 
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The Intersection Test for Oriented Bounding Boxes (OBB) 

§  Lemma "Separating Axis Test" (SAT): 
Let A and B be two convex 3D polyhedra. 
If there is a separating plane, then there is also a separting plane 
that is either parallel to one side of A, or parallel to one side of B, 
or parallel to one edge of A and one edge of B simultaneously. 
[Gottschalk, Lin, Manocha; 1996] 

§  The "separating plane" lemma 
(just a different wording of the "separating axis" lemma): 
Two convex polyhedra A and B do not overlap  ⇔ 
there is an axis (line) in space so that the projections of A and B 
onto that axis do not overlap. 
This axis is called the separating axis. 
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Proof of the SAT Lemma 

1.  Assumption: A and B are disjoint 

2.  Consider the Minkowski sum 

3.  All faces of C are either parallel to one face of 
A, or to one face of B, or to one edge of A and 
one of B (the latter cannot be seen in 2D) 

4.  C is convex 

5.   Therefore: 

6.    

7.                         (i.e., 0 is outside some Hi ) 

8.  That Hi  defines the separating plane; the line 
perpendicular to Hi  is the separating axis.  

A 

B 

C 

C 

0 

Hi 

⇤i : 0 ⇥� Hi

C = A B

A \ B = ? , 0 62 C
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Actually Computing the SAT for OBBs 

§  W.l.o.g.: compute everything in the coordinate frame of OBB A 

§  A is defined by:  center c, axes A1, A2, A3 , and extents a1, a2, a3, resp. 

§  B's position relative to A 
is defined by rot. R and transl. T 

§  In the coord. frame of A: 

Bi are the columns of R 

§  Let L be a line in space;  
then A and B overlap,  
if 

§  Remark: L = normal to the separating plane 

§  According to the lemma, we need to check only a few special lines 

§  With boxes, that number of special lines = 15 

T 

L 

A 
A2 

A1 

T·L 

rA 

B 
B1 

B2 

rB 
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§  Example: 

§  We need to compute:                                    (and similarly rB) 

§  For instance, the 2nd term of the sum is:   

§  In general, we have one test of the following form for each of the 
15 axes: 

T 

L 

A 
A2 

A1 

T·L 

rA 

B 
B1 

B2 

rB Since we compute everything  
in A's coord. frame 
→  A3 is 3rd unit vector, and 
    B2 is 2ns column of R 
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Discretely Oriented Polytopes (k-DOPs) 

§  Definition of k-DOPs: 
Choose k fixed vectors              , with k even, 
and bi  = - bi+k/2  . 
A k-DOP is a volume defined by 

§  A k-DOP is completely described by: 

§  The overlap test for two (axis-aligned) k-DOPs: 
 
 
 
 

i.e., it's just k/2 interval tests 

b1 

b2 

b3 
b4 

b5 

b6 

b7 

b8 

"Slab" 
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Some Properties of k-DOPs 

§  AABBs are special DOPs 

§  The overlap test takes time              , k = number of orientations 

§  With growing k, the convex hull can be approximated arbitrarily 

precise: 

2D: k = 4 
3D: k = 6 

2D: k = 8 
3D: k = 14 

k = 18 k = 26 
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The Overlap Test for Rotated k-DOPs 

§  The idea: enclose an "oriented" DOP by a new axis-aligned one: 
§  The object's orientation is given by rotation R & translation T 

§  The axis-aligned DOP D' = (d'1, …, d'k)  can be computed as follows 
(without proof): 
 
 
 

 
 
 
with 

 

§  The correspondence jil  is identical for all DOPs in the same hierarchy 
(thus, it can be precomputed) 

§  Complexity: O(k) 
-  Compare this to a SAT-based overlap test 

d 0
i = bi

0

@
cj i1
cj i2
cj i3

1

A
�1 0

@
dj i1
dj i2
dj i3

1

A+ biT ,

cj = bjR
�1
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Restricted Boxtrees (a Variant of kd-Trees) 

§  Restricted Boxtrees are a 
combination of kd-trees and AABB 
trees: 

§  The idea: for the left child of a node 
B, split off a portion of the "right" 
part of the box B; for the right child 
of B, split off a portion of the left 
part of B 

§  Memory usage: 1 float, 1 axis ID, 
1 pointer (= 9 bytes) 

§  Other names for the same DS:  

§  Bounding Interval Hierarchy (BIH) 

§  Spatial kd-tree (SKD-Tree) 

splitting planes 

cl 

cu 

x 

y 

upper child 

lower child 
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§  Overlap Tests by "re-alinment" (i.e., enclosing the non-axis-
aligned box in an axis-aligned one, exploiting the special 
structure of restricted boxtrees):  

 12 FLOPs (8.5 with a little trick) 

 

§  Compare this to 
§  SAT:  82 FLOPs 
§  SAT lite:  24 FLOPs 

§  Sphere test:  29 FLOPs 
 

s 

cX 
X 

cY 

Y 
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Performance 

D
oor lock (BM

W
) 

Car (courtesy VW
) 
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The Construction of BV Hierarchies 

§  Obviously:  
if the BVH is bad → collision detection has a bad performance 

§  The general algorithm for BVH construction: top-down 

1. Compute the BV enclosing the set of polygons 

2. Partition the set of polygons 

3. Recursively compute a BVH for each subset 

§  The essential question: the splitting criteria? 

§  Guiding principle: the expected cost of collision detection 
incured by a particular split 
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§  Goal: estimation of P(Xi,Yj) 

§  Our tool: the Minkowski sum 

§  Reminder: 

 

§  Therefore, the probability is: 

§  Conclusion: for a good BVH (for coll.det.) minimize the total 
volume of the children of each node 

X1 
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X 

Y 

Y1 
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X1 � Y1

X � Y

Xi ⇧ Yj = � ⇥ 0 ⌅⇤ Xi � Yj

P(Xi ,Yj) =
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=
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Usual Algorithm for Constructing a BVH 

1.  Find good orientation for a "good" 
splitting plane using PCA 

2.  Find the minimum of the total volume by 
a sweep of the splitting plane along that 
axis 

§  Complexity of that plane-sweep 
algorithm: 

§  Assumption: splits (α) are not too uneven 

T (n) = n log n + T (↵n) + T ((1� ↵)n) 2 O
�
n log2 n

�
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Collision Detection among Morphing Objects 

§  Definition of Morphing: 
Given n  objects Oi  (called morph targets)  
with  vertices        and weights                                  . 
Then the morphed object is given by the vertices: 

§  Alternative representation:  

§  Represent objects Oi  as a single, long "vertex vector": 

§  Then, the morphed object is: 

§  Note: all meshes must have the same "topolgy" (i.e., connectivity)! 
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§  Morphing of k-DOP's: 
Given n DOPs                                                          . 

We define the morphed DOP   

§  Conjecture: 
If the morph targets Oi are bounded by the Di, then the morphed 
object is bounded by the morphed DOP, i.e. 

   

§  Proof:   

§  This is also true analogously for spheres (doesn't work for OBBs)  
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§  Data structure of a BVH for morphed objects: 

§  At each node of the "morphed BVH", store a BV for each of the morph 
targets 

§  Each of these BV's of the morph targets must enclose the same subset 
of polygons! 
 

B2 B1 B2 B1 

B2 B1 
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Time-Critical Collision Detection 

§  Is 100% exact collision detection really necessary? 
§  Consequence:  approximate collision detection 

§  Try to perform collision detection approximately, and 
§  Try to take advantage of that → increase speed 

§  Problems of classical BVH traversal: 
§  Early exit does not yield any information at all 
§  There is no level of detail (unless specifically crafted) 

§  Goal: continuous and and controlled balance between running 
time and accuracy 

§  Idea: utilize a remaining degree of freedom in the simultaneous 
traversal algorithm 

§  New algorithm: 
§  For a given pair of BV's, estimate the probbility of collision within 
§  First "visit" those subtrees with high probability 
§  No stack any more, instead use priority queue (p-queue) 
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Overview of the New Probability-Driven Algorithm 

Traverse(A,B) 

P-queue q 
q.insert(A,B,1) 
while q not empty 
    A,B ← q.pop 
    forall Ai, Bj 
        p ← Pr[ collision in Ai, Bj ] 
        if p ≥ pmin  
            return “collision” 
        if p ≥ 0 
            q.insert(Ai, Bj, p) 
 return “no collision” 

priority queue q; 

A B 

(A,B) 
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A2 
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B2 

(A,B) 

(A1,B1), p=0.9 
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Thought Experiment ("Gedankenexperiment") 

"Well-Filled" Cell → Collision Cell 

Cell 
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Estimation of the Probability of a Collision (Idea only) 

§  "Well-filled" = surface area in a cell is larger than a specific threshold 

§  Idea: 

§  Partition              by grid 

§  Compute probability of cell that is well-filled 
by A and B 

§  During runtime: estimate following param's 

§  s = number of grid cells in 

§  sA , sB = number of cells well-filled by surface of A or B, resp. 

§  Estimate probability for intersection by probability  
that one (or more) cell is well-filled by A and B: 

§  Purely combinatoric "balls into bins" model 

§  Probability 

sA sB 
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Efficient Implementation 

§  Partitioning             and counting number of well-filled cells at 
runtime is too expensive 

§  Solution: preprocessing and further estimations 

§  Augmented BVH (ADB-tree): 

§  For each BV, partition BV by grid (e.g., 83) 

§  Store number of well-filled grid cells with node 

-  Just one additional integer per node! 

§  At runtime, estimate sA and sB by 

§  Precompute function Pr and  
store in a Lookup Table 

A \ B

s 0
A
= sA

Vol(A)

Vol(A \ B)
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Result 

§  Time vs. erro: 
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Open Problems 

§  Can we estimate collision normals that way, too? 

§  Utilize orientation of polygons, in order to improve the 
estimation of an intersection! 

§  What about deformable geometry?! 


