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Y Application Areas for Collision Detection

= Collision detection is an enabling technology for:
= Physically-based simulation

= |nteraction in VR

= Haptic rendering

= Application areas:

= Games, animation, surgery, virtual prototyping, path planning, online
robot collision avoidance

[Rotation"Qbject: ratsche
. A . 2%
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W  Collision Detection Within Simulations

= Main loop:
Move objects
Check collisions

Handle collisions (e.g., compute penalty forces)

= Collisions pose two different problems:
1. Collision detection

2. Collision handling

= |n this chapter: only collision detection

G. Zachmann Virtual Reality WS January 2013 Collision Detection

nEmEEee.n.
o



eeeeee

W  Definitions "

= Given P, Q C R3

" The detection problem:
“P and Q collide“ &
PNQ +#9 <

Ixe3:xePAxeQ

" The construction problem:
compute R :=PNQ

= For polygonal objects we define collisions as follows:
P,Qeollide < IF e FPIF e FR . fNf # o

= The games community often has a different definition of "collision"
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Y  Objekt-Klassen £

VR

. L
a "

= Convex

" Closed and simple
(no self-penetrations)

= Polygon soups konvex
= Not necessarily closed
= Duplicate polygons
= Coplanar polygons
= Self-penetrations

einfach & geschlossen
= Degenerate cardigans

= Holes

= Deformable \

polygon soup
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Importance of the Performance of Collision Detection

naive algorithm clever algorithm
(test all pairs of polygons) (use bbox hierarchy)

Conclusion: the performance of the algorithm for collision detection
determines (often) the overall performance of the simulation!
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Requirements on Collision Detection

= Handle a large class of objects
= Lots of moving objects (some 1000)

= Very high performance, so that a physically-based simulation can

do many iterations per frame (at least 2x 100,000 polygons in <1
millisec)

= Return a contact point ("witness") in case of collision

= Optionally: return all intersection points

= Auxiliary data structures should not be to a large zu grof3e
zusatzliche Datenstrukturen (<2x);

= Preprocessing for these auxiliary data structures should not take too
long, so that it can be done at startup time (< 5sec / object)
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Wi The Collision Interest Matrix

..
"

= |nterest in collisions is specific to different applications/modules:
= Not all modules in an application are interested in all possible collisions;

= Some pairs of objects collide all the time, some can never collide;

= Goal: prevent unnecessary collision tests

= Collision Interest Matrix Obj1 23 456 78
1 X | x|x|x
2 X
" The elements in this matrix comprise: 3 x| |
4 X
= Flag for collision detection 5 X
" : 6
= Additional info that needs to be stored ; .
from frame to frame for each pair for certain 8

algorithms ( e.g., the separating plane)
= Callbacks in die Module
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WU  Methods for the Broad Phase

= Broad phase = one or more filtering step

= Goal: quickly filter pairs of objects that cannot intersect because they
are too far away from each other

= Standard approach:
= Enclose each object within a bounding box (bbox)

= Compare the 2 bboxes for a given pair of objects
= Assumption: n objects are moving
> Brute-force method needs to compare O(n?) bboxes
= |dea: try to determine neighbors (i.e., close objects) very quickly

» 3D grid, sweep plane, etc.

G. Zachmann Virtual Reality WS January 2013 Collision Detection
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W  The 3D Grid

..
"

|dea:
1. Partition the "universe" by a grid

A
2. Objects are considered neighbors, if they N
occupy the same cell k)u

3. Determine cell occupancy by bbox

4. When objects move — update grid

= Neighbor-finding = find all cells that contain U
more than one bbox

1)
NI

= Data structure here: hash table (!)

= Collision in hash table — probably neighbor Total time
The trade-off:

= Fewer cells = larger cells

» Distant objects are still "neighbors"

= More cells = smaller cells # cells along

| | | .
> Objects occupy more cells 1 816 32 each dimension

» Effort for updating increases

G. Zachmann Virtual Reality WS January 2013 Collision Detection 13
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Y The Plane Sweep Technique (Sweep and Prune)

" The idea:
sweep plane through space

perpendicular to the X axis

" The algorithm:

sort the X coordinates of all boxes

start with the leftmost box

keep a list of active boxes
jump from box border to box border:
if current box border is the left side (= "opening"):
add this box to the list of active boxes
check the current box against all others in the active list
else (= "closing"):
remove this box from the list of active boxes

G. Zachmann Virtual Reality WS January 2013 Collision Detection
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G. Zachmann Virtual Reality WS January 2013

Frame-to-Frame Coherence Sl

= Observation:

Two consecutive images in a sequence differ only by very little (usually).

» Terminology: frame-to-frame or temporal coherence
= Examples:

= Motion of a camera

= Motion of objects in a film / animation
= Applications:

= Computer Vision (e.g. tracking of markers)

= MPEG

= Collision detection

= Ray-tracing of animations (e.g. using kinetic data structures)

= Algorithms based on frame-to-frame coherence are called

“incremental”, sometimes “dynamic” or “online” (the latter is
actually the wrong term)

Collision Detection 27
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U  Convex Objects

= Definition of “convex polyhedron”:

PcC R3 convex <
Vx,y e P:xy C P&

P — ﬂ H; , H; = half-spaces

i=1...n

= A condition for "non-collision":
P and Q are “linearly separable” <

3 half-space H: PC HAQ C H*

(“P is completely to one side of H,
Q completely on the other side”)

G. Zachmann Virtual Reality WS January 2013
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Y The Algorithm “Separating Planes” .

" The idea: utilize temporal coherence —
if E; was a separating plane between P and Q at time ¢, then the
new separating plane E¢.q is probably not very "far" from E;
(perhaps it is even the same)

Eti1 \
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load E; = separating plane between P & Q at time ¢
E:=E;
repeat max n times

if exists v € vertices(P) on the back side of E:

rot./transl. E such that vis now on the front side of E

if exists v € vertices(Q) on the front side of E:
rot./transl. E such that v is now on the back side of E

if there are no vertices on the "wrong" side of E, resp.:
return "no collision”

if there are still vertices on the "wrong" side of E:

return "collision" {could be wrong}

Et+1 \
save E¢, 1 :=E for the next frame

For details on the "rot./transl. E" step — see perceptron learning algorithm

G. Zachmann Virtual Reality WS January 2013 Collision Detection 31



eeeeee

How to Find a Vertex on the "Wrong" Side Quickly

" The brute-force method:
test all v whether f(v) = (v —p)-n >0

= Observation:

1. fislinear,

2. Pis convex = f(x) has E
(usually) exactly one minimum

over all points x on the surface of P

V*
3. v o f(v*) = min

= The algorithm (steepest descent on the surface w.r.t. f):
= Start with an arbitrary vertex v

= Walk to the neighbor v’ of v for which f(v’) = min. (among all neighbors)

= Stop if there is no neighbor v’ of v for which f(v') < f(v)

G. Zachmann Virtual Reality WS January 2013 Collision Detection 32
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Properties of this Algorithm

+ Expected running time is in O(1)!
The algo exploits frame-to-frame coherence:
if the objects move only very little, then the algo just checks
whether the old separating plane is still a separating plane;
if the separating plane has to be moved, then the algo is often
finished after a few iterations.

+Works even for deformable objects, so long as they stay convex
— Works only for convex objects

— Could return the wrong answer if P and Q are extremely close but
not intersecting (bias)

= Research question: can you find an un-biased (deterministic) variant?

G. Zachmann Virtual Reality WS January 2013 Collision Detection
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W Closest Feature Tracking

= Proposed by Lin & Canny in 1992 ( — "Lin-Canny-Algorithm")
" |dea:

= Maintain the minimal distance between a pair of objects

= Which is realized by one point on the surface of each object

= |f the objects move continuously, then those points move
continuously on the surface of their objects

" The algorithm is based on the following methods:
= Voronoi diagrams

= The “closest features” lemma

G. Zachmann Virtual Reality WS January 2013 Collision Detection
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W Voronoi Diagrams for Point Sets

= Given a set of points S = {p;} , called sites (or generators)

= Definition of a Voronoi region/cell :

V(p)) ={peR?|Vj£i:|lp—pill <l|lp—pl}

Voronoi
region

= Definition of Voronoi diagrams: w.r.t. p;

The Voronoi diagram VD(5)
over a set of points § is

the union of all Voronoi regions
over the points in §.

= VD(S) induces a partition of the ” o
plane into Voronoi edges, Poe
Voronoi nodes, and Voronoi regions |

" |nteraktive Demo: http://web.cs.uni-bonn.de/l/GeomLab/VoroGlide/

G. Zachmann Virtual Reality WS January 2013 Collision Detection
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W  Voronoi Diagrams over Sets of Points, Edges, Polygons i

e
e

= Voronoi diagrams can be defined analogously in 3D (and higher
dimensions)

= What if the generators are not points but edges / polygons?

= Definition of a Voronoi cell is still the same:
The Voronoi region of an edge/polygon := all points in space that
are closer to "their" generator than to any other

= Example in 2D: L
\\\ ///
N ,° Voronoi region
Y .
. Nt ~— induced by an edge
\\ ‘
N 7/
. . N I
Voronoi region N .7
H _— ©)
induced by y .
a vertex o ~ ~—=Voronoi generators
/ \
f \
/7 \
/; S \
\
! / \ \
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The external
Voronoi regions of ...

@) faces
> (b) edges
/“\. v‘sf’ ' © asingle edge
\‘\‘_\:’? ’ ‘@}/ d) vertices
N
Outer Voronoi

regions for convex
polyhedra can be
constructed very
easily!

(We won't need
inner Voronoi
regions.)

(€)
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W  Closest Features

= Definition Feature f := a vertex, edge, polygon of polyhedron P.

= Definition "Closest Feature":
Let f” and fQ be two features on polyhedra P and Q, resp., and let
p, g be points on f” and fQ, resp., that realize the minimal

distance between P and Q, i.e.
d(P,Q)=d (" ) =|lp—ql
Then £ and /Q are called "closest features". T

" The "closest feature" lemma:
Let V(f) denote the Voronoi region
generated by feature f; let p and g be -~
points on the surface of P and Q realizing q fP
the minimal distance. Then

fP fQ are closest features < pisin V(fQ) , gisin V(fPy .

G. Zachmann Virtual Reality WS January 2013 Collision Detection 39
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Start with two arbitrary features f*, f2 on P and Q, resp.
while (7, fQ) are not (yet) closest features and dist(?,fQ) > 0:

if (f?,f) has been considered already:
return “collision” (b/c we've hit a cycle)

compute p and g that realize the distance between f* and fQ

if pEV(g) und g€ V(p):

return “no collision”, (f°,fQ) are the closest features

if p lies on the "wrong" side of V(q) :
f? := the feature on that "other side" of V(g)

do the same for g, if g & V(p)
if dist(f?, Q) > 0
return "no collision"

else

return "collision"

G. Zachmann Virtual Reality WS

Notice: in case of collision, some features
are inside the other object, but we did not
compute Voronoi regions inside obnjects!

— hence the chance for cycles

January 2013 Collision Detection
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Some Remarks

= A little question to make you think:
Actually, we don't really need the Voronoi diagram!
(but with a Voronoi diagram, the algorithm is faster)

* The running time (in each frame) depends on the "degree" of
temporal coherence

= Better initialization by using a lookup table:

= Partition a surrounding sphere by a grid

= Put each feature in each
grid cell that it covers when
propjected onto the sphere

= Connect the two centers
of a pair of objets

by a line segment

= |nitialize the algorithm by the features hit by that line

G. Zachmann Virtual Reality WS January 2013 Collision Detection 43
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W  The Minkowski Sum

= Hermann Minkowski (1864 — 1909),
German mathematician and physicist

= Definition (Minkowski Sum):
Let A and B be subsets of a vector space;
the Minkowski sum of A and B is defined as

AdB={a+blac A becB}

= Analogously, we define the Minkowski difference:
AcB={a—blac A be B}

= Clearly, the connection between Minkowski sum and difference:

ASB=A® (-B)

= Applications: computer graphics, computer vision, linear
optimization, path planning in robotics, ...

G. Zachmann Virtual Reality WS January 2013 Collision Detection
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Y  Some Simple Properties

= Commutative: AbB=B¢A
= Associative: Ap(Ba(C)=(AeB)a C

Distributive w.r.t. set union: A® (BUC)=(AUB)a® (AU ()

= |nvariant against translation: T(A)©® B = T(A® B)

G. Zachmann Virtual Reality WS January 2013 Collision Detection 46
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" |ntuitive "computation" of the Minkowski sum/difference:

- Warning: the yellow polygon in the animation shows the Minkowsi sum
modulo(!) possible translations!

AeB =A&-B =

Ao - % Y/

G. Zachmann Virtual Reality WS January 2013 Collision Detection 47
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Visualizations of a Simple Example
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Y '  The Complexity of the Minkowski Sum (in 2D) P?“-s:

" Let A and B be polygons with n and m vertices, resp.:

= If both A and B are convex,then A @ B is convex, too, and has
complexity O(m + n)

= If only B is convex, then A @ B has complexity O(mn)
= If neither is convex, then A @ B has complexity O(m?n?)
= Algorithmic complexity of the computation of A& B :
= If A and B are convex, then A® B can be computed in time O(m + n)

= If only B is convex, then A @ B can be computed in
randomized time O(mn log®(mn))

= If neither is convex, then A @ B can be computed in time O(mn?* log(mn))

G. Zachmann Virtual Reality WS January 2013 Collision Detection 50
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;o=
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An Intersection Test for Two Convex Objects using Minkowski Sums = #:

= Translate both objects so

that the coordinate system's T U
origin O is inside B

= Compute the Minkowski - L |
difference -

= A and B intersect &

0cAc B

AeB =A®-B=C

= Example where an :

intersection occurs:

AeB =A®-B=C

G. Zachmann Virtual Reality WS January 2013 Collision Detection 51
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Y

Hierarchical Collision Detection

= The standard approach for "polygon
soups”

= Algorithmic technique:
divide & conquer

G. Zachmann Virtual Reality WS January 2013
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Y  The Bounding Volume Hierarchy (BVH)

= Constructive defintion of a bounding volume hierarchy:

1. Enclose all polygons, P, in a bounding volume BV(P)

2. Partition P into subsets Pq, ..., P,

B
3. Rekursively construct a BVH for each P; B / \ \

and put them as children of P in the tree 1 B /B3
= Typical arity =2 or 4 /TN B.,

B; B3,

B,
\\\
"
(
B1
B B,

G. Zachmann Virtual Reality WS January 2013
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= Visualizations of different
levels of some BVHs:
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Y The General Hierarchical Collision Detection Algo

= Simultaneous traversal N 1
of two BVHs:

B C 2 3
traverse( X, Y) / / \ / \ / \
if X,Y do not overlap then ol L& i O T e

return

if X,Y are leaves then
check polygons

else
for all children pairs do
traverse( X, Y;)

Bounding Volume Test Tree (BVTT)

G. Zachmann Virtual Reality WS January 2013 Collision Detection 56
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U A Simple Running Time Estimation

= Best-case: O (log n) o
Path through the
Bounding Volume Test Tree (BVTT)

= Extremely simple average-case estimation:

= Let P[k] = probability that exactly k children pairs overlap, k € [O,...,4]

1

PIK] = (:) /16, Ploj =+

= Assumption: all events are equally likely — 16 possible events

= Expected running time:
T(n) =130+ 55 T(3) +352T(3) + 5537 () + 5547 (3)
T(n) =2T(3) € O(n)

= |n praxi: running time is better/worse depending on degree of overlap

G. Zachmann Virtual Reality WS January 2013 Collision Detection 57
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Y  Different Kinds of Bounding Volumes

Requirements (for collision detection):
= Very fast overlap test — "simple" BVs
= Even if BVs have been translated/rotated

= Little overlap among BVs on the same level in a BVH (i.e., if you
want to cover the whole space with the BVs, there should be as
little overlap as possible) — "tight BVs"

G. Zachmann Virtual Reality WS January 2013 Collision Detection
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Y  Different Kinds of Bounding Volumes

A
-

Cylinder Box, AABB (R*-trees) Convex hull
[Weghorst et al., 1985] [Beckmann, Kriegel, et al., 1990] [Lin et. al., 2001]
Sphere Prism OBB (oriented bounding box)

[Hubbard, 1996] [Barequet, et al., 1996] [Gottschalk, et al., 1996]

A

.. . ..... ° k-DOP / Slabs Intersection of
[I\S/Iphe”(i;al ?2;”7] [Zachmann, 1998] several BVs
anocha,

G. Zachmann Virtual Reality WS January 2013 Collision Detection
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W  The Wheel of Re-Invention

= OBB-Trees: have been proposed already in 1981 by Dana Ballard
for bounding 2D curves, except they called it "strip trees"

= AABB hierarchies: have been invented(?) in the 80-ies in the
spatial data bases community, except they call them "R-tree", or
"R*-tree", or "X-tree", etc.

G. Zachmann Virtual Reality WS January 2013 Collision Detection
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Y The Intersection Test for Oriented Bounding Boxes (OBB) Bl

" Lemma "Separating Axis Test" (SAT):
Let A and B be two convex 3D polyhedra.
If there is a separating plane, then there is also a separting plane
that is either parallel to one side of A, or parallel to one side of B,
or parallel to one edge of A and one edge of B simultaneously.
[Gottschalk, Lin, Manocha; 1996]

= The "separating plane" lemma
(just a different wording of the "separating axis" lemma):
Two convex polyhedra A and B do not overlap <
there is an axis (line) in space so that the projections of A and B
onto that axis do not overlap.
This axis is called the separating axis.

G. Zachmann Virtual Reality WS January 2013 Collision Detection 63
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W  Proof of the SAT Lemma

1. Assumption: A and B are disjoint

2. Consider the Minkowski sum C = AS B

3. All faces of C are either parallel to one face of
A, or to one face of B, or to one edge of A and
one of B (the latter cannot be seen in 2D)

Cis convex

Therefore: C = il H:

ANB=o0<0&C

3i: 0 & H; (i.e., Ois outside some H,)

® N o oA

That H; defines the separating plane; the line
perpendicular to H; is the separating axis.

G. Zachmann Virtual Reality WS January 2013 Collision Detection
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U  Actually Computing the SAT for OBBs

= W.l.o.g.: compute everything in the coordinate frame of OBB A
= Ais defined by: center c, axes A, A%, A3, and extents a', a2, a3, resp.

= B's position relative to A
is defined by rot. R and transl. T

= |n the coord. frame of A:
B/ are the columns of R

" Let L be a line in space;

then A and B overlap,
if |T-Ll<r,+r,
= Remark: L = normal to the separating plane

= According to the lemma, we need to check only a few special lines

= With boxes, that number of special lines =15

G. Zachmann Virtual Reality WS January 2013 Collision Detection
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= Example: [ = A x B?
" We need to compute: r, = » a;|A"-L| (and similarly ry)

1

= For instance, the 2nd term of the sum is:
aA® - (A'xB?)
= aB? - (A*xAY)
= 3B* - A

= ar R
\

" Since we compute everything
in A's coord. frame
— A3 is 3 unit vector, and
B2 is 2ns column of R

" |n general, we have one test of the following form for each of the

15 axes:
| T - L| < as|Rsn| + a3|Raz| + b1|Ri3| + bs|Ri1]

G. Zachmann Virtual Reality WS January 2013 Collision Detection 66



Y  Discretely Oriented Polytopes (k-DOPs)

= Definition of k-DOPs: b,
Choose k fixed vectors b; € R3, with k even, b, b,
and b; =- b/ . b,< I
A k-DOP is a volume defined by >< N 1
— . .- h.. — A b6 v b
D= () H . Hi:b-x—d <0 M
i=1..k
= A k-DOP is completely described by:D = (d;...ds) € R*
= The overlap test for two (axis-aligned) k-DOPs: '\,gSIab"
D'ND?*=go <
- K. [a1 n 2 42 a Q
Vi=1..5:|dhdl | n|dd,| =2 i

l.e., it's just k/2 interval tests

Collision Detection 67
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Y

Some Properties of k-DOPs

= AABBs are special DOPs
* The overlap test takes time € O(k) , k = number of orientations

= With growing k, the convex hull can be approximated arbitrarily

precise:

w N
g9
=~ =
1|
(O) WF N
w N
SRS
=~ =
(|
— o0
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Y The Overlap Test for Rotated k-DOPs

" The idea: enclose an "oriented" DOP by a new axis-aligned one:
= The object's orientation is given by rotation R & translation T

= The axis-aligned DOP D' = (d'q, ..., d'x) can be computed as follows
(without proof):

e

d; = bi| ¢ dj | +[bi T} (
\_ Cjé; ) dJé

dy

with C; = bjR_l

= The correspondence j, is identical for all DOPs in the same hierarchy
(thus, it can be precomputed)

= Complexity: O(k)
- Compare this to a SAT-based overlap test
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Y

Restricted Boxtrees (a Variant of kd-Trees)

= Restricted Boxtrees are a
combination of kd-trees and AABB
trees:

= The idea: for the left child of a node
B, split off a portion of the "right"
part of the box B; for the right child
of B, split off a portion of the left
part of B

= Memory usage: 1 float, 1 axis ID,
1 pointer (= 9 bytes)
= Other names for the same DS:

» Bounding Interval Hierarchy (BIH)
= Spatial kd-tree (SKD-Tree)

G. Zachmann Virtual Reality WS January 2013
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= Overlap Tests by "re-alinment" (i.e., enclosing the non-axis-
aligned box in an axis-aligned one, exploiting the special
structure of restricted boxtrees):

12 FLOPs (8.5 with a little trick)

= Compare this to
= SAT: 82 FLOPs
= SAT lite: 24 FLOPs

= Sphere test: 29 FLOPs

G. Zachmann Virtual Reality
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W  The Construction of BV Hierarchies

= Obviously:
if the BVH is bad — collision detection has a bad performance
= The general algorithm for BVH construction: top-down
1.Compute the BV enclosing the set of polygons
2.Partition the set of polygons
3.Recursively compute a BVH for each subset

= The essential question: the splitting criteria?

= Guiding principle: the expected cost of collision detection
incured by a particular split

C(X,Y)=4+ > P(X.Y)C(X,Y)
~ 4(1 J,F_P'(Xl, Yi)+ -+ P(Xs, Y2))

G. Zachmann Virtual Reality WS January 2013 Collision Detection
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" Goal: estimation of P(X,Y))

= Qur tool: the Minkowski sum X
= Reminder:

XiNY,=0 & 0&X,8Y, °

= Therefore, the probability is: X16Y

# “good” cases X

P(X,Y;) = oY
(X, ¥)) # all possible cases
_vol(XieY;)  wvol(X;@Y;) _ vol(X;) + vol(Y))

T wvol(XaY)  vol(XaY)  vol(X)+vol(Y)

= Conclusion: for a good BVH (for coll.det.) minimize the total
volume of the children of each node
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Y  Usual Algorithm for Constructing a BVH

1. Find good orientation for a "good"
splitting plane using PCA °* .

2. Find the minimum of the total volume by
a sweep of the splitting plane along that
axis

= Complexity of that plane-sweep
algorithm:

T(n) = nlogn+ T(an)+ T((1 —a)n) € O(nlog” n)
= Assumption: splits (o) are not too uneven
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Y  Collision Detection among Morphing Objects

= Definition of Morphing:
Given n objects O' (called morph targets)
with vertices vJ’ and weights w; , Zi w; =1 .
Then the morphed object is given by the vertices:

VJZZW,'VJ-I. ,_j:].,...,N
=1

= Alternative representation: _

i

= Represent objects O' as a single, long "vertex vector": v' = I.

= Then, the morphed object is:

n .
— ; /
vV = E A" KVN,z)
i=1

= Note: all meshes must have the same "topolgy" (i.e., connectivity)!
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" Morphing of k-DOP's:
GivennDOPs D' = (s{,...,Sk, €{,...,¢€
2

N X =~
N

We define the morphed DOP

D:(gl,...,gg,él,...,gg), SJ,GJ = E W, E W,

= Conjecture:
If the morph targets O are bounded by the D/, then the morphed
object is bounded by the morphed DOP, i.e.

Vi :v, €D then v; € D

n n n
<. — E . i E . i. . E . i — .
=1 =1 =1

= This is also true analogously for spheres (doesn't work for OBBs)

= Proof:
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= Data structure of a BVH for morphed objects:

= At each node of the "morphed BVH", store a BV for each of the morph
targets

= Each of these BV's of the morph targets must enclose the same subset
of polygons!

G. Zachmann Virtual Reality WS January 2013 Collision Detection
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W  Time-Critical Collision Detection

= |s 100% exact collision detection really necessary? !

= Consequence: approximate collision detection
= Try to perform collision detection approximately, and
= Try to take advantage of that — increase speed X@ %
" Problems of classical BVH traversal: —
= Early exit does not yield any information at all
= There is no level of detail (unless specifically crafted)

= Goal: continuous and and controlled balance between running
time and accuracy

" |dea: utilize a remaining degree of freedom in the simultaneous
traversal algorithm

= New algorithm:

= For a given pair of BV's, estimate the probbility of collision within
= First "visit" those subtrees with high probability
= No stack any more, instead use priority queue (p-queue)
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Y Overview of the New Probability-Driven Algorithm

priority queue q;

(AB)

(A,B)

G. Zachmann

(A,,B;), p=0.9

(A,,B,), p=0
(A,,B;), p=0.5

(A2r Bz)r p=0

B

,,,,,,,,,,,,,,,,,,,,,,,,,,

Virtual Reality WS

Traverse(A,B)

P-queue g

g.insert(A,B,1)

while g not empty

A,B < g.pop

forall A, B,

p < Pr[ collision in A, Bj ]

if p=pmin

return “collision”
ifp=0

g.insert(A;, B, p)

return “no collision”

January 2013 Collision Detection
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Y  Thought Experiment ("Gedankenexperiment") 6§§

Cell

"WelldHiikedh Cell
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Estimation of the Probability of a Collision (Idea only)

"Well-filled" = surface area in a cell is larger than a specific threshold

" |dea:
= Partition AN B by grid q
= Compute probability of cell that is well-filled "
by A and B ERma
= During runtime: estimate following param's B
= s = number of grid cellsin AN B
= s4, Sg = number of cells well-filled by surface of A or B, resp.
= Estimate probability for intersection by probability . S
that one (or more) cell is well-filled by A and B: e® eo0o
= Purely combinatoric "balls into bins" model ® ®e

(s—sB>
A
( S ) ~
S
A
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U  Efficient Implementation

= Partitioning A N B and counting number of well-filled cells at
runtime is too expensive

= Solution: preprocessing and further estimations

= Augmented BVH (ADB-tree):
= For each BV, partition BV by grid (e.g., 83)

= Store number of well-filled grid cells with node

- Just one additional integer per node! s

= At runtime, estimate s4 and sg by

g, Vol(A)
A~ "AVol(AN B)

, Pr
= Precompute function Pr and ’

store in a Lookup Table
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Result

" Time vs. erro:

G. Zachmann Virtual Reality

time / msec

errors / %

WS

o T T T T I I I
1,2 1,3 1,4 1,5 16 1,7 1,8 1,9 2

10- — pmin=0.99
— pmin=0.90
8 - — pmin=0.80
6 -
4 -
z —
o T T T T T T T
7,2 1,3 1,4 1,5 1,6 1,7 1,8 1,9 2
distance
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Open Problems

= Can we estimate collision normals that way, too?

= Utilize orientation of polygons, in order to improve the
estimation of an intersection!

= What about deformable geometry?!
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