
Virtual Reality &
Physically-Based Simulation
Collision Detection

G. Zachmann
University of Bremen, Germany
cgvr.cs.uni-bremen.de

G. Zachmann 2 Collision Detection Virtual Reality 21 January 2013 WS

Examples of Applications

Virtual Prototyping

Physically-based simulation

G. Zachmann 3 Collision Detection Virtual Reality 21 January 2013 WS

Application Areas for Collision Detection

§  Collision detection is an enabling technology for:
§  Physically-based simulation

§  Interaction in VR

§  Haptic rendering

§  Application areas:

§  Games, animation, surgery, virtual prototyping, path planning, online
robot collision avoidance

G. Zachmann 4 Collision Detection Virtual Reality 21 January 2013 WS

Collision Detection Within Simulations

§  Main loop:

Move objects

Check collisions

Handle collisions (e.g., compute penalty forces)

§  Collisions pose two different problems:

1.  Collision detection

2.  Collision handling

§  In this chapter: only collision detection

G. Zachmann 5 Collision Detection Virtual Reality 21 January 2013 WS

Definitions

§  Given

§  The detection problem:
 “P and Q collide“ :

§  The construction problem:
 compute

§  For polygonal objects we define collisions as follows:

 P,Q collide

§  The games community often has a different definition of "collision"

P Q

x

R

G. Zachmann 7 Collision Detection Virtual Reality 21 January 2013 WS

Objekt-Klassen

§  Convex

§  Closed and simple
(no self-penetrations)

§  Polygon soups

§  Not necessarily closed

§  Duplicate polygons

§  Coplanar polygons

§  Self-penetrations

§  Degenerate cardigans

§  Holes

§  Deformable

polygon soup

einfach & geschlossen

konvex

G. Zachmann 8 Collision Detection Virtual Reality 21 January 2013 WS

Importance of the Performance of Collision Detection

 naïve algorithm
(test all pairs of polygons)

 clever algorithm
(use bbox hierarchy)

Conclusion: the performance of the algorithm for collision detection
determines (often) the overall performance of the simulation!

G. Zachmann 9 Collision Detection Virtual Reality 21 January 2013 WS

Requirements on Collision Detection

§  Handle a large class of objects

§  Lots of moving objects (some 1000)

§  Very high performance, so that a physically-based simulation can
do many iterations per frame (at least 2x 100,000 polygons in <1
millisec)

§  Return a contact point ("witness") in case of collision

§ Optionally: return all intersection points

§  Auxiliary data structures should not be to a large zu große
zusätzliche Datenstrukturen (<2x);

§  Preprocessing for these auxiliary data structures should not take too
long, so that it can be done at startup time (< 5sec / object)

G. Zachmann 10 Collision Detection Virtual Reality 21 January 2013 WS

The Collision Detection Pipeline

Broad phase Narrow phase

Set transform.
in scene graph

Callback

G. Zachmann 11 Collision Detection Virtual Reality 21 January 2013 WS

The Collision Interest Matrix

§  Interest in collisions is specific to different applications/modules:

§  Not all modules in an application are interested in all possible collisions;

§  Some pairs of objects collide all the time, some can never collide;

§  Goal: prevent unnecessary collision tests
⇒ Collision Interest Matrix

§  The elements in this matrix comprise:

§  Flag for collision detection

§  Additional info that needs to be stored
from frame to frame for each pair for certain
algorithms (e.g., the separating plane)

§  Callbacks in die Module

1 2 3 4 5 6 7 8 Obj
1
2
3
4
5
6
7
8

x
x

x
x

x x

x
x x x x

G. Zachmann 12 Collision Detection Virtual Reality 21 January 2013 WS

Methods for the Broad Phase

§  Broad phase = one or more filtering step

§  Goal: quickly filter pairs of objects that cannot intersect because they
are too far away from each other

§  Standard approach:

§  Enclose each object within a bounding box (bbox)

§  Compare the 2 bboxes for a given pair of objects

§  Assumption: n objects are moving

Ø Brute-force method needs to compare Ο(n2) bboxes

§  Idea: try to determine neighbors (i.e., close objects) very quickly

Ø 3D grid, sweep plane, etc.

G. Zachmann 13 Collision Detection Virtual Reality 21 January 2013 WS

 The 3D Grid

Idea:
1.  Partition the "universe" by a grid

2. Objects are considered neighbors, if they
occupy the same cell

3. Determine cell occupancy by bbox

4. When objects move → update grid

§  Neighbor-finding = find all cells that contain
more than one bbox
§  Data structure here: hash table (!)

§  Collision in hash table → probably neighbor

The trade-off:

§  Fewer cells = larger cells
Ø  Distant objects are still "neighbors"

§  More cells = smaller cells
Ø  Objects occupy more cells

Ø  Effort for updating increases

Total time

cells along
each dimension 1 8 16 32

G. Zachmann 14 Collision Detection Virtual Reality 21 January 2013 WS

The Plane Sweep Technique (Sweep and Prune)

§  The idea:
sweep plane through space
perpendicular to the X axis

§  The algorithm:
 sort the X coordinates of all boxes
 start with the leftmost box
 keep a list of active boxes
 jump from box border to box border:
 if current box border is the left side (= "opening"):
 add this box to the list of active boxes
 check the current box against all others in the active list
 else (= "closing"):
 remove this box from the list of active boxes

G. Zachmann 27 Collision Detection Virtual Reality 21 January 2013 WS

Frame-to-Frame Coherence

§  Observation:
 Two consecutive images in a sequence differ only by very little (usually).

Ø Terminology: frame-to-frame or temporal coherence

§  Examples:
§ Motion of a camera

§ Motion of objects in a film / animation

§  Applications:
§  Computer Vision (e.g. tracking of markers)

§ MPEG

§  Collision detection

§  Ray-tracing of animations (e.g. using kinetic data structures)

§  Algorithms based on frame-to-frame coherence are called
“incremental”, sometimes “dynamic” or “online” (the latter is
actually the wrong term)

G. Zachmann 28 Collision Detection Virtual Reality 21 January 2013 WS

Convex Objects

§  Definition of “convex polyhedron”:

§  A condition for "non-collision":
 P and Q are “linearly separable” ⇔

 (“P is completely to one side of H,
 Q completely on the other side”)

x

y

P

Q

Separating plane H

P ⇢ R3
convex ,

8x , y 2 P : xy ⇢ P ,

P =

\

i=1...n

Hi ,Hi = half-spaces

9 half-space H : P ✓ H ^ Q ✓ Hc

G. Zachmann 30 Collision Detection Virtual Reality 21 January 2013 WS

The Algorithm “Separating Planes”

§  The idea: utilize temporal coherence →
if Et was a separating plane between P and Q at time t, then the
new separating plane Et+1 is probably not very "far" from Et
(perhaps it is even the same)

Et

Et+1

G. Zachmann 31 Collision Detection Virtual Reality 21 January 2013 WS

load Et = separating plane between P & Q at time t

E := Et

repeat max n times

 if exists on the back side of E:

 rot./transl. E such that v is now on the front side of E

 if exists on the front side of E:

 rot./transl. E such that v is now on the back side of E

 if there are no vertices on the "wrong" side of E, resp.:

 return "no collision"

if there are still vertices on the "wrong" side of E:

 return "collision" {could be wrong}

save Et+1 := E for the next frame

Et

Et+1

v 2 vertices(P)

v 2 vertices(Q)

For details on the "rot./transl. E" step → see perceptron learning algorithm

G. Zachmann 32 Collision Detection Virtual Reality 21 January 2013 WS

How to Find a Vertex on the "Wrong" Side Quickly

§  The brute-force method:
 test all v whether

§  Observation:

1.  f is linear,

2.  P is convex ⇒ f(x) has
(usually) exactly one minimum
over all points x on the surface of P

3. 

§  The algorithm (steepest descent on the surface w.r.t. f):

§  Start with an arbitrary vertex v

§ Walk to the neighbor v’ of v for which

§  Stop if there is no neighbor v’ of v for which

p

n

E P

v*
�1 v� : f (v�) = min

f (v) = (v � p)·n > 0

f (v0) = min. (among all neighbors)

f (v0) < f (v)

G. Zachmann 33 Collision Detection Virtual Reality 21 January 2013 WS

Properties of this Algorithm

+ Expected running time is in O(1)!
The algo exploits frame-to-frame coherence:
if the objects move only very little, then the algo just checks
whether the old separating plane is still a separating plane;
if the separating plane has to be moved, then the algo is often
finished after a few iterations.

+ Works even for deformable objects, so long as they stay convex

– Works only for convex objects

– Could return the wrong answer if P and Q are extremely close but
not intersecting (bias)

§  Research question: can you find an un-biased (deterministic) variant?

G. Zachmann 34 Collision Detection Virtual Reality 21 January 2013 WS

Visualization

G. Zachmann 35 Collision Detection Virtual Reality 21 January 2013 WS

Closest Feature Tracking

§  Proposed by Lin & Canny in 1992 (→ "Lin-Canny-Algorithm")

§  Idea:

§ Maintain the minimal distance between a pair of objects

§ Which is realized by one point on the surface of each object

§  If the objects move continuously, then those points move
continuously on the surface of their objects

§  The algorithm is based on the following methods:

§  Voronoi diagrams

§  The “closest features” lemma

G. Zachmann 36 Collision Detection Virtual Reality 21 January 2013 WS

Voronoi Diagrams for Point Sets

§  Given a set of points , called sites (or generators)

§  Definition of a Voronoi region/cell :

§  Definition of Voronoi diagrams:
The Voronoi diagram
over a set of points S is
the union of all Voronoi regions
over the points in S.

§  induces a partition of the
plane into Voronoi edges,
Voronoi nodes, and Voronoi regions

§  Interaktive Demo: http://web.cs.uni-bonn.de/I/GeomLab/VoroGlide/

Voronoi
region
w.r.t. pi

pi

VD(S)

VD(S)

V (pi) := {p 2 R2 | 8j 6= i : ||p� pi || < ||p� pj ||}

G. Zachmann 37 Collision Detection Virtual Reality 21 January 2013 WS

Voronoi Diagrams over Sets of Points, Edges, Polygons

§  Voronoi diagrams can be defined analogously in 3D (and higher
dimensions)

§  What if the generators are not points but edges / polygons?

§  Definition of a Voronoi cell is still the same:
The Voronoi region of an edge/polygon := all points in space that
are closer to "their" generator than to any other

§  Example in 2D:

Voronoi region
induced by
a vertex

Voronoi region
induced by an edge

Voronoi generators

G. Zachmann 38 Collision Detection Virtual Reality 21 January 2013 WS

Outer Voronoi Regions Generated by a Polyhedron

The external
Voronoi regions of …
(a)  faces
(b)  edges
(c)  a single edge
(d)  vertices

Outer Voronoi
regions for convex
polyhedra can be
constructed very
easily!
(We won't need
inner Voronoi
regions.)

G. Zachmann 39 Collision Detection Virtual Reality 21 January 2013 WS

Closest Features

§  Definition Feature fP := a vertex, edge, polygon of polyhedron P.

§  Definition "Closest Feature":
Let fP and fQ be two features on polyhedra P and Q, resp., and let
p, q be points on fP and fQ , resp., that realize the minimal
distance between P and Q, i.e.

Then fP and fQ are called "closest features".

§  The "closest feature" lemma:
Let V(f) denote the Voronoi region
generated by feature f; let p and q be
points on the surface of P and Q realizing
the minimal distance. Then

 fP, fQ are closest features ⇔ p is in V(fQ) , q is in V(fP) .

p
q fP

fQ

G. Zachmann 40 Collision Detection Virtual Reality 21 January 2013 WS

Example

q = fQ (a vertex)

 p = fP (an edge)

Q

P
p

G. Zachmann 41 Collision Detection Virtual Reality 21 January 2013 WS

The Algorithm (Another Kind of a Steepest Descent)

Start with two arbitrary features fP, fQ on P and Q, resp.

while (fP, fQ) are not (yet) closest features and dist(fP, fQ) > 0 :

 if (fP,fQ) has been considered already:
 return “collision” (b/c we've hit a cycle)

 compute p and q that realize the distance between fP and fQ

 if p ∈ V(q) und q ∈ V(p) :
 return “no collision”, (fP,fQ) are the closest features

 if p lies on the "wrong" side of V(q) :

 fP := the feature on that "other side" of V(q)

 do the same for q, if q ∉ V(p)

if dist(fP, fQ) > 0 :

 return "no collision"

else

 return "collision"

Notice: in case of collision, some features
are inside the other object, but we did not
compute Voronoi regions inside obnjects!
→ hence the chance for cycles

G. Zachmann 42 Collision Detection Virtual Reality 21 January 2013 WS

Animation of the Algorithm

P

Q

Start

Start f1
Q

 f1
P

d1

f2
P

f2
Q

d2 f3
P

f3
Q

d3

d4

f4
P

f4
Q

G. Zachmann 43 Collision Detection Virtual Reality 21 January 2013 WS

Some Remarks

§  A little question to make you think:
Actually, we don't really need the Voronoi diagram!
(but with a Voronoi diagram, the algorithm is faster)

§  The running time (in each frame) depends on the "degree" of
temporal coherence

§  Better initialization by using a lookup table:

§  Partition a surrounding sphere by a grid

§  Put each feature in each
grid cell that it covers when
propjected onto the sphere

§  Connect the two centers
of a pair of objets
by a line segment

§  Initialize the algorithm by the features hit by that line

G. Zachmann 44 Collision Detection Virtual Reality 21 January 2013 WS

Movie

G. Zachmann 45 Collision Detection Virtual Reality 21 January 2013 WS

The Minkowski Sum

§  Hermann Minkowski (1864 – 1909),
German mathematician and physicist

§  Definition (Minkowski Sum):
Let A and B be subsets of a vector space;
the Minkowski sum of A and B is defined as

§  Analogously, we define the Minkowski difference:

§  Clearly, the connection between Minkowski sum and difference:

§  Applications: computer graphics, computer vision, linear
optimization, path planning in robotics, ...

A� B = {a + b | a ⇥ A, b ⇥ B}

A⇥ B = {a� b | a ⇤ A, b ⇤ B}

A⇤ B = A⇥ (�B)

G. Zachmann 46 Collision Detection Virtual Reality 21 January 2013 WS

Some Simple Properties

§  Commutative:

§  Associative:

§  Distributive w.r.t. set union:

§  Invariant against translation:

A� (B ⇥ C) = (A ⇥ B)� (A ⇥ C)

A� (B � C) = (A� B)� C

A� B = B � A

T (A)� B = T (A� B)

G. Zachmann 47 Collision Detection Virtual Reality 21 January 2013 WS

§  Intuitive "computation" of the Minkowski sum/difference:

-  Warning: the yellow polygon in the animation shows the Minkowsi sum
modulo(!) possible translations!

G. Zachmann 49 Collision Detection Virtual Reality 21 January 2013 WS

Visualizations of a Simple Example

G. Zachmann 50 Collision Detection Virtual Reality 21 January 2013 WS

The Complexity of the Minkowski Sum (in 2D)

§  Let A and B be polygons with n and m vertices, resp.:

§  If both A and B are convex,then is convex, too, and has
complexity

§  If only B is convex, then has complexity

§  If neither is convex, then has complexity

§  Algorithmic complexity of the computation of :

§  If A and B are convex, then can be computed in time

§  If only B is convex, then can be computed in
randomized time

§  If neither is convex, then can be computed in time

A� B

A� B

A� B

A� B

A� B

A� B

O(m + n)

A� B

G. Zachmann 51 Collision Detection Virtual Reality 21 January 2013 WS

An Intersection Test for Two Convex Objects using Minkowski Sums

§  Translate both objects so
that the coordinate system's
origin 0 is inside B

§  Compute the Minkowski
difference

§  A and B intersect ⇔

§  Example where an
intersection occurs:

0 ⇥ A� B

G. Zachmann 53 Collision Detection Virtual Reality 21 January 2013 WS

Hierarchical Collision Detection

§  The standard approach for "polygon
soups"

§  Algorithmic technique:
divide & conquer

BP

BQ

BP
1

BP
2

BQ
1

BQ
2

G. Zachmann 54 Collision Detection Virtual Reality 21 January 2013 WS

The Bounding Volume Hierarchy (BVH)

§  Constructive defintion of a bounding volume hierarchy:

1.  Enclose all polygons, P, in a bounding volume BV(P)

2.  Partition P into subsets P1, ..., Pn

3.  Rekursively construct a BVH for each Pi

and put them as children of P in the tree

§  Typical arity = 2 or 4

B
B1

B2

B3

B

B1 B2 B3

B31 B32

B31
B32

G. Zachmann 55 Collision Detection Virtual Reality 21 January 2013 WS

§  Visualizations of different
levels of some BVHs:

G. Zachmann 56 Collision Detection Virtual Reality 21 January 2013 WS

The General Hierarchical Collision Detection Algo

§  Simultaneous traversal
of two BVHs:

traverse(X, Y)

if X,Y do not overlap then
 return

if X,Y are leaves then
 check polygons

else
 for all children pairs do
 traverse(Xi, Yj)

E F G D

C B
A

F5 G4 G5 F4
F7 G6 G7 F6

D7 E6 E7 D6
E4 D4 D5 E5

A1
B2 B3 C2 C3

5 6 7 4

3 2
1

Bounding Volume Test Tree (BVTT)

G. Zachmann 57 Collision Detection Virtual Reality 21 January 2013 WS

A Simple Running Time Estimation

§  Best-case:

§  Extremely simple average-case estimation:
§  Let P[k] = probability that exactly k children pairs overlap, k ∈ [0,…,4]

§  Assumption: all events are equally likely → 16 possible events

§  Expected running time:

§  In praxi: running time is better/worse depending on degree of overlap

Path through the
Bounding Volume Test Tree (BVTT)

T (n) = 1
16 ·0 + 4

16 ·T (n
2) + 6

16 ·2T (n
2) + 4

16 ·3T (n
2) + 1

16 ·4T (n
2)

T (n) = 2T (n
2) � O

�
n
⇥

P[k] =

✓
4

k

◆
/16 , P[0] =

1

16

G. Zachmann 58 Collision Detection Virtual Reality 21 January 2013 WS

Different Kinds of Bounding Volumes

Requirements (for collision detection):

§  Very fast overlap test → "simple" BVs

§  Even if BVs have been translated/rotated

§  Little overlap among BVs on the same level in a BVH (i.e., if you
want to cover the whole space with the BVs, there should be as
little overlap as possible) → "tight BVs"

G. Zachmann 59 Collision Detection Virtual Reality 21 January 2013 WS

Different Kinds of Bounding Volumes

Box, AABB (R*-trees)
[Beckmann, Kriegel, et al., 1990]

Sphere
[Hubbard, 1996]

k-DOP / Slabs
[Zachmann, 1998] Spherical shell

[Manocha, 1997]

Prism
[Barequet, et al., 1996]

OBB (oriented bounding box)
[Gottschalk, et al., 1996]

Cylinder
[Weghorst et al., 1985]

Convex hull
[Lin et. al., 2001]

Intersection of
several BVs

G. Zachmann 60 Collision Detection Virtual Reality 21 January 2013 WS

The Wheel of Re-Invention

§  OBB-Trees: have been proposed already in 1981 by Dana Ballard
for bounding 2D curves, except they called it "strip trees"

§  AABB hierarchies: have been invented(?) in the 80-ies in the
spatial data bases community, except they call them "R-tree", or
"R*-tree", or "X-tree", etc.

G. Zachmann 61 Collision Detection Virtual Reality 21 January 2013 WS

Digression: the Wheel of Fortune (Rad der Fortuna)

Codex Buranus Boccaccio De Casibus Virorum Illustrium Paris: 1467

G. Zachmann 63 Collision Detection Virtual Reality 21 January 2013 WS

The Intersection Test for Oriented Bounding Boxes (OBB)

§  Lemma "Separating Axis Test" (SAT):
Let A and B be two convex 3D polyhedra.
If there is a separating plane, then there is also a separting plane
that is either parallel to one side of A, or parallel to one side of B,
or parallel to one edge of A and one edge of B simultaneously.
[Gottschalk, Lin, Manocha; 1996]

§  The "separating plane" lemma
(just a different wording of the "separating axis" lemma):
Two convex polyhedra A and B do not overlap ⇔
there is an axis (line) in space so that the projections of A and B
onto that axis do not overlap.
This axis is called the separating axis.

G. Zachmann 64 Collision Detection Virtual Reality 21 January 2013 WS

Proof of the SAT Lemma

1.  Assumption: A and B are disjoint

2.  Consider the Minkowski sum

3.  All faces of C are either parallel to one face of
A, or to one face of B, or to one edge of A and
one of B (the latter cannot be seen in 2D)

4.  C is convex

5.  Therefore:

6. 

7.  (i.e., 0 is outside some Hi)

8.  That Hi defines the separating plane; the line
perpendicular to Hi is the separating axis.

A

B

C

C

0

Hi

⇤i : 0 ⇥� Hi

C = A B

A \ B = ? , 0 62 C

G. Zachmann 65 Collision Detection Virtual Reality 21 January 2013 WS

Actually Computing the SAT for OBBs

§  W.l.o.g.: compute everything in the coordinate frame of OBB A

§  A is defined by: center c, axes A1, A2, A3 , and extents a1, a2, a3, resp.

§  B's position relative to A
is defined by rot. R and transl. T

§  In the coord. frame of A:

Bi are the columns of R

§  Let L be a line in space;
then A and B overlap,
if

§  Remark: L = normal to the separating plane

§  According to the lemma, we need to check only a few special lines

§  With boxes, that number of special lines = 15

T

L

A
A2

A1

T·L

rA

B
B1

B2

rB

G. Zachmann 66 Collision Detection Virtual Reality 21 January 2013 WS

§  Example:

§  We need to compute: (and similarly rB)

§  For instance, the 2nd term of the sum is:

§  In general, we have one test of the following form for each of the
15 axes:

T

L

A
A2

A1

T·L

rA

B
B1

B2

rB Since we compute everything
in A's coord. frame
→  A3 is 3rd unit vector, and
 B2 is 2ns column of R

G. Zachmann 67 Collision Detection Virtual Reality 21 January 2013 WS

Discretely Oriented Polytopes (k-DOPs)

§  Definition of k-DOPs:
Choose k fixed vectors , with k even,
and bi = - bi+k/2 .
A k-DOP is a volume defined by

§  A k-DOP is completely described by:

§  The overlap test for two (axis-aligned) k-DOPs:

i.e., it's just k/2 interval tests

b1

b2

b3
b4

b5

b6

b7

b8

"Slab"

G. Zachmann 68 Collision Detection Virtual Reality 21 January 2013 WS

Some Properties of k-DOPs

§  AABBs are special DOPs

§  The overlap test takes time , k = number of orientations

§  With growing k, the convex hull can be approximated arbitrarily

precise:

2D: k = 4
3D: k = 6

2D: k = 8
3D: k = 14

k = 18 k = 26

G. Zachmann 69 Collision Detection Virtual Reality 21 January 2013 WS

The Overlap Test for Rotated k-DOPs

§  The idea: enclose an "oriented" DOP by a new axis-aligned one:
§  The object's orientation is given by rotation R & translation T

§  The axis-aligned DOP D' = (d'1, …, d'k) can be computed as follows
(without proof):

with

§  The correspondence jil is identical for all DOPs in the same hierarchy
(thus, it can be precomputed)

§  Complexity: O(k)
-  Compare this to a SAT-based overlap test

d 0
i = bi

0

@
cj i1
cj i2
cj i3

1

A
�1 0

@
dj i1
dj i2
dj i3

1

A+ biT ,

cj = bjR
�1

G. Zachmann 70 Collision Detection Virtual Reality 21 January 2013 WS

Restricted Boxtrees (a Variant of kd-Trees)

§  Restricted Boxtrees are a
combination of kd-trees and AABB
trees:

§  The idea: for the left child of a node
B, split off a portion of the "right"
part of the box B; for the right child
of B, split off a portion of the left
part of B

§  Memory usage: 1 float, 1 axis ID,
1 pointer (= 9 bytes)

§  Other names for the same DS:

§  Bounding Interval Hierarchy (BIH)

§  Spatial kd-tree (SKD-Tree)

splitting planes

cl

cu

x

y

upper child

lower child

G. Zachmann 71 Collision Detection Virtual Reality 21 January 2013 WS

§  Overlap Tests by "re-alinment" (i.e., enclosing the non-axis-
aligned box in an axis-aligned one, exploiting the special
structure of restricted boxtrees):

 12 FLOPs (8.5 with a little trick)

§  Compare this to
§  SAT: 82 FLOPs
§  SAT lite: 24 FLOPs

§  Sphere test: 29 FLOPs

s

cX
X

cY

Y

G. Zachmann 72 Collision Detection Virtual Reality 21 January 2013 WS

Performance

D
oor lock (BM

W
)

Car (courtesy VW
)

 0

 0.4

 0.8

 1.2

 1.6

 2

 0 20 40 60

tim
e

/
m

ill
is

ec

pgons / 1000

car

Restr. Boxtree
DOP tree

 0

 0.2

 0.4

 0.6

 0 50 100 150 200 250

tim
e

/
m

ill
is

ec

pgons / 1000

lock

DOP tree
Restr. Boxtree

G. Zachmann 73 Collision Detection Virtual Reality 21 January 2013 WS

The Construction of BV Hierarchies

§  Obviously:
if the BVH is bad → collision detection has a bad performance

§  The general algorithm for BVH construction: top-down

1. Compute the BV enclosing the set of polygons

2. Partition the set of polygons

3. Recursively compute a BVH for each subset

§  The essential question: the splitting criteria?

§  Guiding principle: the expected cost of collision detection
incured by a particular split

G. Zachmann 74 Collision Detection Virtual Reality 21 January 2013 WS

§  Goal: estimation of P(Xi,Yj)

§  Our tool: the Minkowski sum

§  Reminder:

§  Therefore, the probability is:

§  Conclusion: for a good BVH (for coll.det.) minimize the total
volume of the children of each node

X1
Y1

X

Y

Y1

0

X1 � Y1

X � Y

Xi ⇧ Yj = � ⇥ 0 ⌅⇤ Xi � Yj

P(Xi ,Yj) =
“good” cases

all possible cases

=

vol(Xi Yj)

vol(X Y)

=

vol(Xi � Yj)

vol(X � Y)

⇡ vol(Xi) + vol(Yj)

vol(X) + vol(Y)

G. Zachmann 75 Collision Detection Virtual Reality 21 January 2013 WS

Usual Algorithm for Constructing a BVH

1.  Find good orientation for a "good"
splitting plane using PCA

2.  Find the minimum of the total volume by
a sweep of the splitting plane along that
axis

§  Complexity of that plane-sweep
algorithm:

§  Assumption: splits (α) are not too uneven

T (n) = n log n + T (↵n) + T ((1� ↵)n) 2 O
�
n log2 n

�

G. Zachmann 77 Collision Detection Virtual Reality 21 January 2013 WS

Collision Detection among Morphing Objects

§  Definition of Morphing:
Given n objects Oi (called morph targets)
with vertices and weights .
Then the morphed object is given by the vertices:

§  Alternative representation:

§  Represent objects Oi as a single, long "vertex vector":

§  Then, the morphed object is:

§  Note: all meshes must have the same "topolgy" (i.e., connectivity)!

wi ,
P

i wi = 1

v j =
nX

i=1

wiv
i
j , j = 1, . . . ,N

vi =

0

BBBBBBBB@

v i

1,x

v i

1,y

v i

1,z

v i

2,x
...

v i

N,z

1

CCCCCCCCA

v =
nX

i=1

wiv
i

G. Zachmann 78 Collision Detection Virtual Reality 21 January 2013 WS

§  Morphing of k-DOP's:
Given n DOPs .

We define the morphed DOP

§  Conjecture:
If the morph targets Oi are bounded by the Di, then the morphed
object is bounded by the morphed DOP, i.e.

§  Proof:

§  This is also true analogously for spheres (doesn't work for OBBs)

D i = (s i1, . . . , s
i
k
2
, e i1, . . . , e

i
k
2
)

D = (s1, . . . , s k
2
, e1, . . . , e k

2
) , (s j , e j) = (

X
wis

i
j ,

X
wie

i
j)

8l : vil 2 D i then vj 2 D

8l : s j =
nX

i=1

wis
i
j

nX

i=1

wi

�
vil ·bj

�

nX

i=1

wie
i
j = e j

G. Zachmann 79 Collision Detection Virtual Reality 21 January 2013 WS

§  Data structure of a BVH for morphed objects:

§  At each node of the "morphed BVH", store a BV for each of the morph
targets

§  Each of these BV's of the morph targets must enclose the same subset
of polygons!

B2 B1 B2 B1

B2 B1

G. Zachmann 82 Collision Detection Virtual Reality 21 January 2013 WS

Time-Critical Collision Detection

§  Is 100% exact collision detection really necessary?
§  Consequence: approximate collision detection

§  Try to perform collision detection approximately, and
§  Try to take advantage of that → increase speed

§  Problems of classical BVH traversal:
§  Early exit does not yield any information at all
§  There is no level of detail (unless specifically crafted)

§  Goal: continuous and and controlled balance between running
time and accuracy

§  Idea: utilize a remaining degree of freedom in the simultaneous
traversal algorithm

§  New algorithm:
§  For a given pair of BV's, estimate the probbility of collision within
§  First "visit" those subtrees with high probability
§  No stack any more, instead use priority queue (p-queue)

G. Zachmann 83 Collision Detection Virtual Reality 21 January 2013 WS

Overview of the New Probability-Driven Algorithm

Traverse(A,B)

P-queue q
q.insert(A,B,1)
while q not empty
 A,B ← q.pop
 forall Ai, Bj
 p ← Pr[collision in Ai, Bj]
 if p ≥ pmin
 return “collision”
 if p ≥ 0
 q.insert(Ai, Bj, p)
 return “no collision”

priority queue q;

A B

(A,B)

A1

A2
B1

B2

(A,B)

(A1,B1), p=0.9
(A1,B2), p=0
(A2,B1), p=0.5
(A2,B2), p=0

(A1,B1)

(A2,B1)

G. Zachmann 84 Collision Detection Virtual Reality 21 January 2013 WS

Thought Experiment ("Gedankenexperiment")

"Well-Filled" Cell → Collision Cell

Cell

G. Zachmann 85 Collision Detection Virtual Reality 21 January 2013 WS

Estimation of the Probability of a Collision (Idea only)

§  "Well-filled" = surface area in a cell is larger than a specific threshold

§  Idea:

§  Partition by grid

§  Compute probability of cell that is well-filled
by A and B

§  During runtime: estimate following param's

§  s = number of grid cells in

§  sA , sB = number of cells well-filled by surface of A or B, resp.

§  Estimate probability for intersection by probability
that one (or more) cell is well-filled by A and B:

§  Purely combinatoric "balls into bins" model

§  Probability

sA sB

s

B

A

A \ B

Pr = 1�

�
s�sB
sA

�

�
s
sA

�

A \ B

G. Zachmann 86 Collision Detection Virtual Reality 21 January 2013 WS

Efficient Implementation

§  Partitioning and counting number of well-filled cells at
runtime is too expensive

§  Solution: preprocessing and further estimations

§  Augmented BVH (ADB-tree):

§  For each BV, partition BV by grid (e.g., 83)

§  Store number of well-filled grid cells with node

-  Just one additional integer per node!

§  At runtime, estimate sA and sB by

§  Precompute function Pr and
store in a Lookup Table

A \ B

s 0
A
= sA

Vol(A)

Vol(A \ B)

G. Zachmann 87 Collision Detection Virtual Reality 21 January 2013 WS

Result

§  Time vs. erro:

distance

er
ro

rs
 /

 %

0
2
4
6
8

10

1,2 1,3 1,4 1,5 1,6 1,7 1,8 1,9 2

pmin=0.99
pmin=0.90
pmin=0.80

1,2 1,3 1,4 1,5 1,6 1,7 1,8 1,9 2

tim
e

/
m

se
c

0

0,1

0,2

0,3
pmin=0.99
pmin=0.90
pmin=0.80

G. Zachmann 88 Collision Detection Virtual Reality 21 January 2013 WS

Open Problems

§  Can we estimate collision normals that way, too?

§  Utilize orientation of polygons, in order to improve the
estimation of an intersection!

§  What about deformable geometry?!

